TrAp: a tree approach for fingerprinting subclonal tumor composition

نویسندگان

  • Francesco Strino
  • Fabio Parisi
  • Mariann Micsinai
  • Yuval Kluger
چکیده

Revealing the clonal composition of a single tumor is essential for identifying cell subpopulations with metastatic potential in primary tumors or with resistance to therapies in metastatic tumors. Sequencing technologies provide only an overview of the aggregate of numerous cells. Computational approaches to de-mix a collective signal composed of the aberrations of a mixed cell population of a tumor sample into its individual components are not available. We propose an evolutionary framework for deconvolving data from a single genome-wide experiment to infer the composition, abundance and evolutionary paths of the underlying cell subpopulations of a tumor. We have developed an algorithm (TrAp) for solving this mixture problem. In silico analyses show that TrAp correctly deconvolves mixed subpopulations when the number of subpopulations and the measurement errors are moderate. We demonstrate the applicability of the method using tumor karyotypes and somatic hypermutation data sets. We applied TrAp to Exome-Seq experiment of a renal cell carcinoma tumor sample and compared the mutational profile of the inferred subpopulations to the mutational profiles of single cells of the same tumor. Finally, we deconvolve sequencing data from eight acute myeloid leukemia patients and three distinct metastases of one melanoma patient to exhibit the evolutionary relationships of their subpopulations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reconstructing subclonal composition and evolution from whole genome sequencing of tumors

Tumors often contain multiple, genetically distinct subpopulations of cancerous cells. These so-called subclonal populations are defined by distinct somatic mutations that include point mutations such as single nucleotide variants and small indels – collectively called simple somatic mutations (SSMs) – as well as larger structural changes that result in copy number variations (CNVs). In some ca...

متن کامل

Accounting for tumor heterogeneity using a sample-specific error model improves sensitivity and specificity in mutation calling for sequencing data

Subclonal mutations reveal important features of the genetic architecture of tumors. However, accurate detection of mutations in genetically heterogeneous tumor cell populations using NGS remains challenging. We developed MuSE (http://bioinformatics.mdanderson.org/main/MuSE), mutation calling using a Markov substitution model for evolution, a novel approach modeling the evolution of the allelic...

متن کامل

Plagiarism checker for Persian (PCP) texts using hash-based tree representative fingerprinting

With due respect to the authors’ rights, plagiarism detection, is one of the critical problems in the field of text-mining that many researchers are interested in. This issue is considered as a serious one in high academic institutions. There exist language-free tools which do not yield any reliable results since the special features of every language are ignored in them. Considering the paucit...

متن کامل

Comparing Nonparametric Bayesian Tree Priors for Clonal Reconstruction of Tumors

Statistical machine learning methods, especially nonparametric Bayesian methods, have become increasingly popular to infer clonal population structure of tumors. Here we describe the treeCRP, an extension of the Chinese restaurant process (CRP), a popular construction used in nonparametric mixture models, to infer the phylogeny and genotype of major subclonal lineages represented in the populat...

متن کامل

SubClonal Hierarchy Inference from Somatic Mutations: Automatic Reconstruction of Cancer Evolutionary Trees from Multi-region Next Generation Sequencing

Recent improvements in next-generation sequencing of tumor samples and the ability to identify somatic mutations at low allelic fractions have opened the way for new approaches to model the evolution of individual cancers. The power and utility of these models is increased when tumor samples from multiple sites are sequenced. Temporal ordering of the samples may provide insight into the etiolog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2013